前言有本数求折小第一无量数率可以径求此立法也而法有所穷必须先求三十二率何也盖多率之开方初商表其数极繁惟初商单一则任折小至多率而初商实亦必仍为单一幸而求折小多率者其首位必为单一故用第一第二两术其第一数必为单一而初商实犹可知若用第三四术则初商必为二而初商实即极繁而不可求矣然即用第一二术而其中又有窒今试以一为本数依第一术求之则以一为除法初商实一减一得九为乘法乘除法相差甚微而位不降位不降即不能递求依第二术则一除九乘位不惟不降而反升尤不能递求是窒也
夫求折小多率者其本数必须单一下有空位空位后带零数则减余数小而可求今本数一既非单一又无零数则必假一单一下有空位带零数之数以求之此用数之所由来也而求用数约有四法以本数先求折小第几率为用数其第一数以折小率若干乘之然后递求此一法也以本数首位降为单位以自二至九自一一至一九诸数累除之为用数求得数后以除法对数加之视降几位再首位加几又一法也以本数先求倍大第几率以首位降为单位为用数求得数后视降几位则首位加几然后以倍大率若干除之又一法也
置本数以自二至九累乘之以首位降为单位为用数求得数后视降几位首位加几然后以乘法之对数减之又一法也然第一法取数不易而有畸零惟求对数根不得已而用之第二法亦有畸零第三法虽无畸零而不可必得盖诸数之倍大率不能辄得首位为一而下有空位也惟第四法既无畸零且可必得故求用数可以倍大率求者则用倍大率其不可用倍大率者则用借数累乘法为便也
假如以倍大率求二之用数
法以二自乘九次得一千零二十四为二之倍大第十率降三位得一二四为二之用数 假如以累乘法求七之用数
法以七用二乘之得十四又以八乘之得一百一十二又以九乘之得一千零八降三位得一八为七之用数 假如兼用倍大率及累乘法求三之用数法以三自乘再乘得二十七为三之倍大第三率以四乘之得一百零八降二位得一八为三之用数 论借数
戴煦
借数者自二至九共八数借为累乘之数也凡诸数择八数内之数乘之皆可得首位为一而下有空位故借数不必广求即八数而已足但由用数求得之对数必以乘法之对数加之则必先求借数之对数而借数虽有八数实止三数何也二五四八本通为一数三六九亦通为一数惟七则自为一数故有三数之对数而八数之对数已备有八数之对数而诸数之用数亦无不备矣
假如有对数根求二与四与五与八之对数法依前求得二之用数一二四减去单一得二四为递次乘法乃以乘法乘对数根得一四二三六七五六五六七八四三凡乘法在单位下则乘得数小于原数为第一数正乘法乘第一数一乘之二除之得一二五七六八一七八八一三七为第二数负乘法乘第二数二乘之三除之得二一二二八九七二六一为第三数正乘法乘第三数三乘之四除之得三六二二一二一五七为第四数负如是递求得六九一六二四七三三为第五数正一三八三二四九五为第六
数负二八四五五四为第七数正五九七六为第八数负一二七为第九数正三为第十数负乃诸正数得一四二五六九四八六五六六七又诸负数得一二五一一二八四六七四八一一八以负减正得一二九九九五六六三九八一一九四九为用数之对数以用数系降三位乃于首位加三得三一二九九九五六六三九八一一九四九为一千零二十四之对数以一千零二十四系二之倍大第十率乃以十除之得三一二九九九五六六三九八一一九小余四九为二之对数也
求四之对数者以四即二之倍大第二率乃以二之对数二乘之得六二五九九九一三二七九六二三八九八即四之对数求五之对数者以二与五相乘即十乃以十之对数单一内减二之对数得六九八九七四三三六一八八五一即五之对数求八之对数者以八即二之倍大第三率乃以二之对数三乘之得九三八九九八六九九一九四三五八四七即八之对数用数 一二四
乘法 二四
第一数一四二三六七五六五六七八四三乘法乘之一乘二除得二一二五七六八一七八八一三七同二三三二一二二八九七二六一同三四四三六二二一二一五七同四五五六九一六二四七三三同五六六一三八三二四九五同六七七二八四五五四同七八八五九七六同八九九
左旋