令少行减多行,反复相减,则头位必先尽。上无一位,则此行亦阙一物矣。然而举率以相减,不害余数之课也。若消去头位,则下去一物之实。

  如是叠令左右行相减,审其正负,则可得而知。先令右行上禾乘中行,为齐同之意。为齐同者,谓中行直减右行也。从简易虽不言齐同,以齐同之意观之,其义然矣。〕

  又乘其次,亦以直除。

  〔复去左行首。〕

  然以中行中禾不尽者遍乘左行,而以直除。

  〔亦令两行相去行之中禾也。〕

  左方下禾不尽者,上为法,下为实。实即下禾之实。

  〔上、中禾皆去,故余数是下禾实,非但一秉。欲约众秉之实,当以禾秉数为法。列此,以下禾之秉数乘两行,以直除,则下禾之位皆决矣。各以其余一位之秉除其下实。即计数矣用算繁而不省。所以别为法,约也。然犹不如自用其旧。

  广异法也。〕

  求中禾,以法乘中行下实,而除下禾之实。

  〔此谓中两禾实,下禾一秉实数先见,将中秉求中禾,其列实以减下实。而左方下禾虽去一,以法为母,于率不通。故先以法乘,其通而同之。俱令法为母,而除下禾实。以下禾先见之实令乘下禾秉数,即得下禾一位之列实。减于下实,则其数是中禾之实也。〕

  余,如中禾秉数而一,即中禾之实。

  〔余,中禾一位之实也。故以一位秉数约之,乃得一秉之实也。〕

  求上禾,亦以法乘右行下实,而除下禾、中禾之实。

  〔此右行三禾共实,合三位之实。故以二位秉数约之,乃得一秉之实。今中下禾之实其数并见,令乘右行之禾秉以减之。故亦如前各求列实,以减下实也。〕

  余,如上禾秉数而一,即上禾之实。实皆如法,各得一斗。

  〔三实同用,不满法者,以法命之。母、实皆当约之。〕

  今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗;下禾八秉,益实一斗,与上禾二秉,而实一十斗。问上、下禾实一秉各几何?答曰:上禾一秉实一斗五十二分斗之一十八。下禾一秉实五十二分斗之四十一。

  术曰:如方程。损之曰益,益之曰损。

  〔问者之辞虽?今按:实云上禾七秉,下禾二秉,实一十一斗;上禾二秉,下禾八秉,实九斗也。“损之曰益”,言损一斗,余当一十斗;今欲全其实,当加所损也。“益之曰损”,言益实以一斗,乃满一十斗;今欲知本实,当减所加,即得也。〕

  损实一斗者,其实过一十斗也;益实一斗者,其实不满一十斗也。

  〔重谕损益数者,各以损益之数损益之也。〕

  今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗。上取中、中取下、下取上各一秉而实满斗。问上、中、下禾实一秉各几何?答曰上禾一秉实二十五分斗之九。中禾一秉实二十五分斗之七。下禾一秉实二十五分斗之四。

  术曰:如方程。各置所取。

  〔置上禾二秉为右行之上,中禾三秉为中行之中,下禾四秉为左行之下,所取一秉及实一斗各从其位。诸行相借取之物皆依此例。〕

  以正负术入之。

  正负术曰:〔今两算得失相反,要令正负以名之。正算赤,负算黑,否则以邪正为异。

  方程自有赤、黑相取,法、实数相推求之术。而其并减之势不得广通,故使赤、黑相消夺之,于算或减或益。同行异位殊为二品,各有并、减之差见于下焉。著此二条,特系之禾以成此二条之意。故赤、黑相杂足以定上下之程,减、益虽殊足以通左右之数,差、实虽分足以应同异之率。然则其正无入以负之,负无入以正之,其率不妄也。〕

  同名相除,〔此谓以赤除赤,以黑除黑,行求相减者,为去头位也。然则头位同名者,当用此条,头位异名者,当用下条。〕

  异名相益,〔益行减行,当各以其类矣。其异名者,非其类也。非其类者,犹无对也,非所得减也。故赤用黑对则除,黑;无对则除,黑;黑用赤对则除,赤;无对则除,赤;赤黑并于本数。此为相益之,皆所以为消夺。消夺之与减益成一实也。

  术本取要,必除行首。至于他位,不嫌多少,故或令相减,或令相并,理无同异而一也。〕

  正无入负之,负无入正之。

  〔无入,为无对也。无所得减,则使消夺者居位也。其当以列实或减下实,而行中正负杂者亦用此条。此条者,同名减实,异名益实,正无入负之,负无入正之也。〕

  其异名相除,同名相益,正无入正之,负无入负之。

  〔此条异名相除为例,故亦与上条互取。凡正负所以记其同异,使二品互相取而已矣。言负者未必负于少,言正者未必正于多。故每一行之中虽复赤黑异算无伤。然则可得