,是为半外角。以庚丁为半径之比,则甲庚即为丁半外角正切之比。半径与正切恆为正角,甲庚与庚丁圆内作两通弦,亦无不成正角故也。又作丁己线,与甲庚平行,庚丁仍为半径之比,丁己又为庚向圆外半较角正切之比。而戊甲庚大形与戊丁己小形,戊甲、戊丁既在一线,甲庚、丁己又系平行,自然同式。故甲戊两边相加为一率,戊丁两边相减馀为二率,甲庚半外角正切为三率,求得四率,自当丁己半较角正切也。
  四曰两角夹一边求不知之一角,以所知两角相并,与半周相减,馀即得。此其理具两边夹一角。
  五曰三边求角,以大边为底,中、小二边相并相减,两数相乘,大边除之,得数与大边相加折半为分底大边,相减馀折半为分底小边。乃以中边为一率,分底大边为二率,半径为三率,求得四率,为对小边角馀弦。或以小边为一率,分底小边为二率,半径为三率,求得四率,为对中边角馀弦。此其理在勾股弦冪相求及两方冪相较。如图甲丙中边、甲乙小边皆为弦,乙丙大边由丁分之,丁丙、丁乙皆为勾,中垂线甲丁为股。勾股冪相并恆为弦冪,今甲丁股既两形所同,则甲丙大弦冪多于甲乙小弦冪,即同丙丁大勾冪多于乙丁小勾冪。又两方冪相较,恆如两方根和较相乘之数。如图戊寅壬庚为大方冪,减去己卯辛庚小方冪,馀戊己卯辛壬寅曲矩形。移卯癸壬辛为癸寅丑子,成一直方形,其长戊丑,自为大方根戊寅、小方根卯辛之和;其阔戊己,自为大方根戊庚、小方根己庚之较。故甲乙丙形,甲丙、甲乙相加为和,相减为较。两数相乘,即如丙丁、丁乙和较相乘之数。丙乙除之,自得其较。丙午相加相减各折半,自得丙丁及乙丁,既得丙丁、乙丁,各以丙甲、乙甲为半径之比,丙丁、乙丁自为馀弦之比矣。
  此五术者,有四不待算,一不可算。对边求对角,令所知两边相等,则所求角与所知角必相等。对角求对边,令所知两角相等,则所求边与所知边必相等。两边夹一角,令所知两边相等,则所求二角必正得所知外角之半。三边求角,令二边相等,即分不等者之半为底边;三边相等,即平分半周三角皆六十度,皆不待算也。若对边求对角,所知一边数少,对所知一角锐;又所知一边数多,求所对之角,不能知其为锐、为钝,是不可算也。诸题求边角未尽者,互按得之。
  弧三角形者,三圆周相遇而成,其边亦以度计。九十度为足,少于九十度为小,过九十度为大。其角锐、钝、正与平三角等。算术有七:
  一曰对边求对角,以所知边正弦为一率,对角正弦为二率,所知又一边正弦为三率,求得四率,为所求对角正弦。此其理亦系两次比例省为一次。如图甲乙丙形,知甲乙、丙乙二边及丙角,求甲角。作乙辛垂弧,半径与丙角正弦之比,同于乙丙正弦与乙辛正弦之比。法当以半径为一率,丙角正弦为二率,乙丙正弦为三率,求得四率,为乙辛正弦。既得乙辛正弦,甲乙正弦与乙辛正弦之比,同于半径与甲角正弦之比。乃以甲乙正弦为一率,乙辛正弦为二率,半径为三率,求得四率,为甲角正弦。然乘除相报,可省省之。
  二曰对角求对边,以所知角正弦为一率,对边正弦为二率,所知又一角正弦为三率,求得四率,为所求对边正弦。此其理反观自明。
  三曰两边夹一角,或锐或钝,求不知之一边。以半径为一率,所知角馀弦为二率,任以所知一边正切为三率,求得四率,命为正切。对表得度,与所知又一边相减,馀为分边。乃以前得度馀弦为一率,先用边馀弦为二率,分边馀弦为三率,求得四率,为不知之边馀弦。原角钝,分边大,此边小;分边小,此边大。原角锐,分边小,此边小;分边大,此边大。此其理系三次比例省为二次。如图甲丙丁形,知甲丙、甲丁二边及甲角,中作垂弧丙乙,半径与甲角馀弦之比,同于甲丙正切与甲乙正切之比。先一算为易明。既分甲丁于乙,而得丁乙分边,甲乙馀弦与半径之比,同于甲丙馀弦与丙乙馀弦之比。法当先以甲乙馀弦为一率,半径为二率,甲丙馀弦为三率,求得四率,为丙乙馀弦。既得丙乙馀弦,半径与乙丁馀弦之比,同于丙乙馀弦与丁丙馀弦之比。乃以半径为一率,乙丁馀弦为二率,丙乙馀弦为三率,求得四率,为丁丙馀弦。然而乘除相报,故从省。两边夹一角若正,则径以所知两边馀弦相乘半径除之,即得不知边之馀弦,理自明也。所知两边俱大俱小,此边小;所知两边一小一大,此边大。
  四曰两角夹一边,求不知之一角。以角为边,以边为角,反求之;得度,反取之;求、取皆与半周相减。
  五曰所知两边对所知两角,或锐、或钝,求不知之边角。以半径为一率,任以所知一角之馀弦为二率,对所知又一角之边正切为三率,求得四率,命为正切,对表得度。复以所知又一角、一边如法求之,复得度。视原所知两角锐、钝相同,则两得度相加;不同,则两得度相减;皆加减为不知之边。乃按第一术对边求对角,即得不知之角。原又一角钝,对先用角之边大于后得度,此角钝;对先用角之边小于后得度,此角锐。原又一角锐,对先用角之边小于后得度,此角钝;对先用角之边大于后得度,此角锐。此