,一百一除之为度,以加其日下历积度,各得所求。又《乾元》、《仪天》有求正交黄道月度,《乾元》元率通定交度及分,以一百二十七乘之,满九十五而一,进一等,复收为入交度,用减其朔加时日度,即朔前月离正交黄道宿度。《仪天》置朔、望及正交历积度,以少减多,余为月行去交度及分;乃视其朔望在交前者加、交后者减朔望加时黄道月度,为初、中、正交黄道月度也。
九道交初月度:《乾元》谓之月离入交九道正交月度、九道朔度。《仪天》谓之求月离正交九道宿度。
置月离交初黄道宿度,各以所入限数乘之,遇半倍使
如百而一,为泛差;用求黄、赤二道差,依前法加减之,即月离交初九道宿度。《乾元》以日躔阴阳差阳加阴减,为朔、望常分;又以所入限率乘,正交黄道宿度相从之,以求黄、赤二道差,如前加减,为月离正交九道宿度;以入交定度加而命之,即朔月离宿度。《仪天》置正交月离黄道,以距度下月九道差,宗法乘之,以距度所入限数乘度,余从之,为总差;半而退位,一百一收之,又计冬、夏二至以求度数乘,满九十而一为度差,依前法加减,为正交月离九道。
求九道朔月度:百约月离先后定数,后加先减四十二,用减中盈而从朔日,乃加交初九道宿次,即得所求。《乾元》置九道正交之度及分,以入交定度加之,命以九道宿次,即其朔加时月离宿度及分也。《仪天》法见下。《乾元》又有定交度,置月离阴阳定数,以七十一乘之,满九百一除之为分,用阴减阳加常分为度及分。
求九道望月度:《仪天》谓之求定朔、望加时日月度。
以象积加朔九道月度,命以其道,即得所求。《乾元》置朔、望加时日相距之度,以天中度及分加之,为加时象积;用加九道朔月度,命以其道宿次去之,即望日月度及分也。自望推朔亦如之。《仪天》求定朔望加时九道日度,以其朔、望去交度,交前者减之,交后者加之,满九道宿度去之,即定朔、望加时九道日度也。求定朔望加时九道月度,置其日加时九道日度,其合朔者非正交,即日在黄道、月在九道各入宿度,多少不同,考其去极,若应绳准。
故云月与太阳同度也。如求黄道月度法,盈九道宿次去之,各得其日加时九道宿度,自此以后,皆如求黄道月度法入之,依九道宿度行之,各得所求也。
求晨昏月:《乾元》谓之月离晨昏度。《仪天》谓之求晨昏月度。
置后历七日下离分,与其日离分相比较,取多者乘朔、望定分,取少者乘晨昏分,皆满元法为分,百除为度分,仍相减之,朔、望度多者为后,少者为前。
各得晨昏前后度分;前加后减朔、望九道月度为晨昏月。《乾元》置其月离差,在三百九十三以上者,用乘朔、望定分,以下者,只用三百九十三乘,为加时分;元率除之,进一位,二百九十四收为度;又以离差乘晨昏分,亦如前收之为度,与加时度相减之,加时度多为后、少为前,即得晨昏前后度及分,加减如《应天》。《仪天》以晨昏分减定朔、弦、望小余为后,不足者,返减之为前,以乘入历定分,宗法除之,一百一约之为度,乃以前加后减加时月度为晨昏月度。
晨昏象积:《仪天》谓之求晨昏程积度。
置加时象积,以前象前后度前减后加,又以后象前后度前加后减,即得所求。《乾元》法同。《仪天》以所求朔、弦、望加时日度减后朔、弦、望加时日度,余加弦、望度及余,为加时程积;以所求前后分返其加减,又以后朔、弦、望前后度分依其加减,各为晨昏程积度及余也。
求每日晨昏月:《仪天》谓之求每日入历定度。
累计距后象离分,百除为度分,用减晨昏象积为加,不足,返减,以距后象日数除之,为日差;用加减每日离分,百除为度分,累加晨昏月,命以九道宿次,即得所求。《乾元》法同。《仪天》从所求日累计距后历每日历度及分,以减程积为进,不足,返减之,余为退,以距后朔、弦、望日数均之,进加退减每日历定度及分,各为每日历定度及分也。
步晷漏
求每日晷景去极度晨分:《乾元》谓之晷景距中度晨分。《仪天》别立法,具后。
各以气数相减为分,自雨水后法十六,霜降后法十五,除分为中率,二率相减,为合差;半之,加减中率为初、末率。前多者,加为初、减为末;前少者,减为初、加为末。
又以元法除合差,为日差;后多者累益初率,后少者累减初率。
为每日损益率;以其数累积之,各得诸气初数也
左旋