中外之浑:六百七十五尺之面,开方除之,不足一,谓外浑积二十六也;内浑,二十五之面,谓积五尺也。今徽令质言中浑,浑又言质,则二质相与之率犹衡二浑相与之率也。衡盖亦先二质之率推以言浑之率也。衡又言:“质,六十四之面;浑,二十五之面。”质复言浑,谓居质八分之五也。又云:方,八之面;圆,五之面。”圆浑相推,知其复以圆镂方率,浑为圆率也,失之远矣。衡说之自然欲协其阴阳奇偶之说而不顾疏密矣。虽有文辞,斯乱道破义,病也。置外质积二十六,以九乘之,十六而一,得积十四尺八分尺之五,即质中之浑也。以分母乘全内子,得一百一十七。又置内质积五,以分母乘之,得四十,是谓质居浑一百一十七分之四十,而浑率犹为伤多也。假令方二尺,方四面,并得八尺也,谓之方周。其中令圆径与方等,亦二尺也。圆半径以乘圆周之半,即圆幂也。半方以乘方周之半,即方幂也。然则方周知,方幂之率也;圆周知,圆幂之率也。按:如衡术,方周率八之面,圆周率五之面也。令方周六十四尺之面,圆周四十尺之面也。又令径二尺自乘,得径四尺之面,是为圆周率十之面,而径率一之面也。衡亦以周三径一之率为非,是故更著此法,然增周太多,过其实矣。

  淳风等按:祖之谓刘徽、张衡二人皆以圆镂方率,丸为圆率,乃设新法。祖之开立圆术曰:“以二乘积,开立方除之,即立圆径。其意何也?取立方棋一枚,令立枢于左后之下隅,从规去其右上之廉;又合而衡规之,去其前上之廉。于是立方之棋分而为四,规内棋一,谓之内棋;规外棋三,谓之外棋。

  规更合四棋,复横断之。以句股言之,令余高为句,内棋断上方为股,本方之数,其弦也。句股之法:以句幂减弦幂,则余为股幂。若令余高自乘,减本方之幂,余即内棋断上方之幂也。本方之幂即此四棋之断上幂。然则余高自乘,即外三棋之断上幂矣。不问高卑,势皆然也。然固有所归同而途殊者尔。而乃控远以演类,借况以析微。按:阳马方高数参等者,倒而立之,横截去上,则高自乘与断上幂数亦等焉。夫叠棋成立积,缘幂势既同,则积不容异。由此观之,规之外三棋旁蹙为一,即一阳马也。三分立方,则阳马居一,内棋居二可知矣。合八小方成一大方,合八内棋成一合盖。内棋居小方三分之二,则合盖居立方亦三分之二,较然验矣。置三分之二,以圆幂率三乘之,如方幂率四而一,约而定之,以为丸率。

  故曰丸居立方二分之一也。”等数既密,心亦昭。张衡放旧,贻哂于后,刘徽循故,未暇校新。夫岂难哉,抑未之思也。依密率,此立圆积,本以圆径再自乘,十一乘之,二十一而一,得此积。今欲求其本积,故以二十一乘之,十一而一。

  凡物再自乘,开立方除之,复其本数。故立方除之,即丸径也。〕

  卷五

  ○商功(以御功程积实)

  今有穿地,积一万尺。问为坚、壤各几何?答曰:为坚七千五百尺;为壤一万二千五百尺。

  术曰:穿地四为壤五,〔壤谓息土。〕

  为坚三,〔坚谓筑土。〕

  为墟四。

  〔墟谓穿坑。此皆其常率。〕

  以穿地求壤,五之;求坚,三之;皆四而一。

  〔今有术也。〕

  以壤求穿,四之;求坚,三之;皆五而一。以坚求穿,四之;求壤,五之;皆三而一。

  〔淳风等按:此术并今有之义也。重张穿地积一万尺,为所有数,坚率三、壤率五各为所求率,穿率四为所有率,而今有之,即得。〕

  城、垣、堤、沟、堑、渠皆同术。

  术曰:并上下广而半之,〔损广补狭。〕

  以高若深乘之,又以袤乘之,即积尺。

  〔按:此术“并上下广而半之”者,以盈补虚,得中平之广。“以高若深乘之”,得一头之立幂。“又以袤乘之”者,得立实之积,故为积尺。〕

  今有穿地,袤一丈六尺,深一丈,上广六尺,为垣积五百七十六尺。问穿地下广几何?答曰:三尺五分尺之三。

  术曰:置垣积尺,四之为实。

  〔穿地四,为坚三。垣,坚也。以坚求穿地,当四之,三而一也。〕

  以深、袤相乘,〔为深、袤之立实也。〕

  又三之,为法。

  〔以深、袤乘之立实除垣积,即坑广。又三之者,与坚率并除之。〕

  所得,倍之。

  〔为坑有两广,先并而半之,即为广狭之中平。今先得其中平,故又倍之知,两广全也。〕

  减上广,余即下广。

  〔按:此术穿地四,为坚三。垣即坚也。今以坚求穿地,当四乘之,三而一。

  深、袤相乘者,为深袤立幂。以深袤立幂除积,即坑广。又三之,为法,与坚率并除。所得,倍之者,为坑有两广,先并而半之,为